The HIV Latent Reservoir in Ugandans: Implications for HIV Cure

Thomas C. Quinn, MD Associate Director of International Research Division of Intramural Research, NIAID, NIH

19610'ILL' ANTRA MARTIN

Acknowlegements

Jessica Prodger

Steve Reynolds Andrew Redd Katherine Yu Adam Capoferri **Robert Siliciano Janet Siliciano Aggrey Anok Jingo Kasule** Taddeo Kityamuweesi **David Serwadda**

National Institute of Allergy and Infectious Diseases

And the Rakai Health Sciences Team and Participants!!

Dynamics of HIV-1 Replication in Patients on ART Therapy

Latent Reservoir Poses the Greatest Barrier to Cure

Time on ART (years)

Siliciano JD, Nat Med, 2003.

Latent Viral Reservoir (LVR) in Sub-Saharan Africans

- HIV cure research is dependent on accurate measurements of the LVR. However, no studies had previously quantified LVR in sub-Saharan Africans.
- High burden of endemic infections and other regional differences (viral subtype) may affect size of the LVR and efficacy of cure strategies.
- Quantitate the LVR size and dynamics over time, and measure correlates of immune parameters in SSA in order to tailor cure strategies as they develop.

Study Populations

- Rakai, Uganda:
 - 70 HIV+ individuals on ART; >two VL <40 copies 12-18 months apart.
 - LVR quantification: Quantitative viral outgrowth assay (Q-VOA)
 - Retested annually for 5 years to determine decay curves
- Baltimore, USA:
 - 51 Moore Clinic patients studied using same techniques (Q-VOA)
 - Decay curves already calculated

Frequency of Resting CD4+ T cells Infected with Latent, Replication-Competent HIV-1 in Americans and Ugandans as Measured by QVOA

Prodger, et al, Clin Infect Dis. 2017

Subtyping: Sequencing Outgrowth Virus

- Isolates were sequenced in gp41 and pol using MiSeq NGS sequencing protocol
- No difference in IUPM between A, D, recombinants (p=0.3)
 - A: median = 0.46 IUPM (IQR: 0.21 1.55 IUPM)
 - D: median = 0.34 IUPM (IQR: 0.15 0.79 IUPM)
 - Recombinants: 1.10 IUPM (IQR: 0.24 2.20 IUPM)
- Continuing to sequence additional outgrowth wells from all participants for clonality

Prodger et al., Clin Infect Dis. 2017

Direct Correlation of Reservoir Size (IUPM) with Set-point Viral Load and Inverse Correlation with Time Virally Suppressed

Latent Reservoir Size by Gender

- In this original study, Ugandan women had a much smaller reservoir size than American women, but the difference was not significant due to the few women in the US study.
- Thus we expanded the study to include a total of 90 Ugandans (57 women and 33 men).
- Ugandan women had a significant lower median reservoir size (0.53 IUPM) compared to men (1.01 IUPM) (p<0.01).

Ugandan Study of HIV Latent Reservoir by Sex

Characteristic Median (IQR)	Females (n = 57)	Males (n = 33)	P-value
Age (years)	41.1 (37.4, 47.2)	44.2 (40.3, 47.1)	0.15
Subtype, n (%) A C D A/D A/F A/C Unknown	9 (15.8) 2 (3.5) 26 (45.6) 7 (12.3) 1 (1.8) 0 12 (21.1)	5 (15.2) 1 (3.0) 17 (51.5) 3 (9.1) 0 1 (3.0) 6 (18.2)	0.76
Pre-ART Viral Load (log₁₀ copies/mL) Females (n = 47); Males (n = 28)	4.62 (3.88, 4.93)	4.72 (4.17, 5.22)	0.18
Nadir CD4+ T cell count (cells/µL)	180 (109, 232)	168 (129, 238)	0.92
Time on ART (years)	7.0 (5.3, 8.5)	6.9 (3.3 9.3)	0.86
CD4+ T cell count at QVOA (cells/µL)	594 (461, 740)	458 (380, 559)	<0.01
CD4+/CD8+ T cell ratio at QVOA	0.89 (0.65, 1.12)	0.63 (0.56, 0.84)	<0.01
Viremic time (years) Females (n = 16); Males (n = 16)	6.1 (4.2, 10.2)	5.6 (3.7, 7.8)	0.46

Frequency of Viral Outgrowth by Sex

Measurement of HIV DNA gag per million cells

Proportion of Reactivated HIV per DNA

Summary and Future Studies

- HIV latent reservoir was smaller in Ugandans compared to Americans, and differed significantly by gender among Ugandans, but not by subtype
- Further studies on gender differences in latent reservoir activation.
 - As shown by others, estrogen receptor-1 is a key regulator of HIV-1 latency that imparts gender-specific restrictions on the latent reservoir (Das et al, PNAS 2018; Scully et al, JID 2019)
 - Accurate measurements of intact, replication-competent virus, total integrated viral DNA and intact proviral DNA (IPDA)
- Sequencing of the viral outgrowths for clonality and timing with ARV use